A execução de estruturas de concreto conforme as normas técnicas

Pode-se definir a execução de uma estrutura de concreto como todas as atividades desenvolvidas, ou seja, sistema de fôrmas, armaduras, concretagem, cura e outras, bem como as relativas à inspeção e documentação de como construído, incluindo a análise do controle de resistência do concreto.

concreto3Da Redação –

A construção de uma estrutura de concreto necessita de um bom projeto estrutural que depende do cálculo estrutural e do seu detalhamento. O cálculo é a fase em que o projetista define as dimensões das peças, a resistência dos materiais e a quantidade de concreto e aço necessárias para resistir aos esforços. O detalhamento é o momento onde será colocada no papel, de maneira gráfica, o que foi calculado.

Assim como em qualquer obra, é importante a utilização de materiais de qualidade. Também é preciso tomar cuidado com o armazenamento dos materiais, principalmente cimento, areia, brita e aço. Qualquer material mal armazenado de maneira incorreta, perde as suas boas características.

O traço do concreto é a quantidade de cada material utilizada para alcançar uma determinada resistência. A falta de traço correto pode acarretar uma baixa resistência do concreto, e também pode causar desperdício caso utilize mais cimento do que precisa. Tudo isso deve ser feito de acordo com a norma técnica.

A NBR 14931 de 04/2004 – Execução de estruturas de concreto – Procedimento estabelece os requisitos gerais para a execução de estruturas de concreto. Em particular, esta norma define requisitos detalhados para a execução de obras de concreto, cujos projetos foram elaborados de acordo com a NBR 6118. Abrange os requisitos para a execução de uma estrutura, conforme definido em projeto, se aplica a estruturas de concreto permanentes ou temporárias e à execução de fundação superficial, sapata, “radier”, sapata associada, blocos e vigas de fundação, conforme definido em 3.1 a 3.7 e 3.30 da NBR 6122:1996.

Importante é que nas especificações de projeto devem ser apresentadas todas as informações necessárias e todos os requisitos técnicos para a execução da estrutura de concreto, conforme estabelece a seção 5 da NBR 6118:2003. As especificações de projeto devem considerar e fazer referência a normas nacionais e requisitos específicos do local da obra, com respeito a todos os aspectos inerentes à construção, como: instalações contra incêndios, impermeabilizações (NBR 12190), ações sobre a estrutura (como o vento, NBR 6123), segurança, condição ambiental, e outros.

O espaço destinado ao canteiro da obra deve estar de acordo com as características da construção a ser realizada, sendo previsto o correto armazenamento de materiais e equipamentos, bem como as instalações necessárias para escritórios e dependências para a permanência de operários durante a execução da obra, de acordo com as normas de segurança (NR 18) e de canteiro (NBR 12284). Todos os materiais empregados na execução da estrutura de concreto devem ser recebidos conforme estabelecem as normas relacionadas em 5.3.

Os materiais não previstos nesse item devem seguir as especificações pertinentes em cada caso. Os materiais a serem utilizados devem permanecer armazenados na obra ou na central de dosagem, separados fisicamente desde o instante do recebimento até o momento de utilização. Cada material deve estar perfeitamente identificado durante o armazenamento, no que diz respeito à classe, à graduação e, quando for o caso, à procedência.

Os documentos que comprovam a origem, as características e a qualidade dos materiais devem permanecer arquivados, conforme legislação vigente. Quando o concreto for preparado na obra, o armazenamento dos materiais que o compõem deve estar conforme com o que estabelece a NBR 12655. Os aços para as armaduras devem ser estocados de forma a manterem inalteradas suas características geométricas e suas propriedades, desde o recebimento na obra até seu posicionamento final na estrutura.

Cada tipo e classe de barra, tela soldada, fio ou cordoalha utilizado na obra deve ser claramente identificado logo após seu recebimento, de modo que não ocorra troca involuntária quando de seu posicionamento na estrutura. Para os aços recebidos cortados e dobrados, valem as mesmas prescrições para as diferentes posições. A estocagem deve ser feita de modo a impedir o contato com qualquer tipo de contaminante (solo, óleos, graxas, entre outros).

O sistema de fôrmas, que compreende as fôrmas, o escoramento, o cimbramento e os andaimes, incluindo seus apoios, bem como as uniões entre os diversos elementos, deve ser projetado e construído de modo a ter: a resistência às ações a que possa ser submetido durante o processo de construção, considerando a ação de fatores ambientais; a carga da estrutura auxiliar; carga das partes da estrutura permanente a serem suportadas pela estrutura auxiliar até que o concreto atinja as características estabelecidas pelo responsável pelo projeto estrutural para remoção do escoramento; os efeitos dinâmicos acidentais produzidos pelo lançamento e adensamento do concreto, em especial o efeito do adensamento sobre o empuxo do concreto nas fôrmas, respeitados os limites estabelecidos em 9.5 e 9.6; no caso de concreto protendido, resistência adequada à redistribuição de cargas originadas durante a protensão; a rigidez suficiente para assegurar que as tolerâncias especificadas para a estrutura em 9.2.4 e nas especificações do projeto (ver 5.2.1) sejam satisfeitas e a integridade dos elementos estruturais não seja afetada.

O formato, a função, a aparência e a durabilidade de uma estrutura de concreto permanente não devem ser prejudicados devido a qualquer problema com as fôrmas, o escoramento ou sua remoção. No plano da obra deve constar a descrição do método a ser seguido para construir e remover estruturas auxiliares, devendo ser especificados os requisitos para manuseio, ajuste, contra flecha intencional, desforma e remoção. A retirada de fôrmas e escoramentos deve ser executada de modo a respeitar o comportamento da estrutura em serviço.

No caso de dúvidas quanto ao modo de funcionamento de uma estrutura específica, o engenheiro responsável pela execução da obra deve entrar em contato com o projetista, a fim de obter esclarecimento sobre a sequência correta para retirada das fôrmas e do escoramento. O escoramento deve ser projetado de modo a não sofrer, sob a ação de seu próprio peso, do peso da estrutura e das cargas acidentais que possam atuar durante a execução da estrutura de concreto, deformações prejudiciais ao formato da estrutura ou que possam causar esforços não previstos no concreto.

No projeto do escoramento devem ser consideradas a deformação e a flambagem dos materiais e as vibrações a que o escoramento estará sujeito. Quando de sua construção, o escoramento deve ser apoiado sobre cunhas, caixas de areia ou outros dispositivos apropriados a facilitar a remoção das fôrmas, de maneira a não submeter a estrutura a impactos, sobrecargas ou outros danos.

Devem ser tomadas as precauções necessárias para evitar recalques prejudiciais provocados no solo ou na parte da estrutura que suporta o escoramento, pelas cargas por este transmitidas, prevendo-se o uso de lastro, piso de concreto ou pranchões para correção de irregularidades e melhor distribuição de cargas, assim como cunhas para ajuste de níveis. No caso do emprego de escoramento metálico, devem ser seguidas as instruções do fornecedor responsável pelo sistema.

Os planos de desforma e escoramentos remanescentes devem levar em conta os materiais utilizados associados ao ritmo de construção, tendo em vista o carregamento decorrente e a capacidade suporte das lajes anteriores, quando for o caso. Fundamental que a superfície da armadura deve estar livre de ferrugem e substâncias deletérias que possam afetar de maneira adversa o aço, o concreto ou a aderência entre esses materiais.

As armaduras que apresentem produtos destacáveis na sua superfície em função de processo de corrosão devem passar por limpeza superficial antes do lançamento do concreto. Após a limpeza deve ser feita uma avaliação das condições da armadura, em especial de eventuais reduções de seção.

As armaduras levemente oxidadas, por exposição ao tempo em ambientes de agressividade fraca a moderada, por períodos de até três meses, sem produtos destacáveis e sem redução de seção, podem ser empregadas em estruturas de concreto. Caso a armadura apresente nível de oxidação que implique redução da seção, deve ser feita uma limpeza enérgica e posterior avaliação das condições de utilização, de acordo com as normas de especificação do produto, eventualmente considerando-a como de diâmetro nominal inferior.

No caso de corrosão por ação e presença de cloretos, com formação de “pites” ou cavidades, a armadura deve ser lavada com jato de água sob pressão para retirada do sal e dos cloretos dessas pequenas cavidades. O dobramento das barras, inclusive ganchos, deve ser feito respeitando os diâmetros internos de curvatura da tabela abaixo. As barras de aço devem ser sempre dobradas a frio. As barras não devem ser dobradas junto às emendas por solda, observando-se uma distância mínima de 10 φ.

concreto

As emendas devem ser feitas de acordo com o previsto no projeto estrutural, podendo ser executadas emendas: por traspasse; por luva com preenchimento metálico, prensadas ou rosqueadas; por solda; por outros dispositivos devidamente justificados. As emendas de barras devem estar de acordo com o que estabelece a seção 9 da NBR 6118:2003.

As emendas não previstas no projeto só podem ser localizadas e executadas mediante consulta prévia ao projetista. Apenas podem ser emendadas por solda barras de aço com características de soldabilidade. Para que um aço seja considerado soldável, sua composição deve obedecer aos limites estabelecidos na NBR 8965.

As emendas por solda podem ser: de topo, por caldeamento, para bitola não menor que 10 mm; de topo, com eletrodo, para bitola não menor que 20 mm; por traspasse com pelo menos dois cordões de solda longitudinais, cada um deles com comprimento não inferior a 5 φ afastados no mínimo 5 φ (ver figura 1); com outras barras justapostas (cobre juntas), com cordões de solda longitudinais, fazendo-se coincidir o eixo baricentro do conjunto com o eixo longitudinal das barras emendadas, devendo cada cordão ter comprimento de pelo menos 5 φ (ver figura acima).

As emendas por solda podem ser realizadas na totalidade das barras em uma seção transversal do elemento estrutural. Devem ser consideradas como na mesma seção as emendas que de centro a centro estejam afastadas entre si menos que 15 φ medidos na direção do eixo da barra. A resistência de cada barra emendada deve ser considerada sem redução.

Em caso de barra tracionada e havendo preponderância de carga acidental, a resistência deve ser reduzida em 20%. As máquinas soldadoras devem ter características elétricas e mecânicas apropriadas à qualidade do aço e à bitola da barra e devem ser de regulagem automática. A solda deve ser realizada por pessoal capacitado. A eficiência do processo de soldagem, a qualificação do soldador e a qualidade do equipamento utilizado devem ser comprovadas experimentalmente, para barras de qualquer categoria, antes de serem empregadas na obra.

Nas emendas por pressão as extremidades das barras devem ser planas e normais aos eixos. Nas emendas por solda com eletrodo as extremidades devem ser chanfradas. Em todos os casos as superfícies a serem emendadas devem ser rigorosamente limpas.

Devem ser realizados ensaios prévios, nas mesmas condições em que serão realizadas as operações de soldagem na obra, ou seja, empregando os mesmos processo, equipamento, material e pessoal. Devem ainda ser realizados ensaios posteriores para controle, de acordo com o que estabelece a NBR 11919 e verificadas as condições de aceitação da solda.

A armadura deve ser posicionada e fixada no interior das fôrmas de acordo com as especificações de projeto, com as tolerâncias estabelecidas em 9.2.4, caso o projeto da estrutura, em virtude de circunstâncias especiais, não as exija mais rigorosas, de modo que durante o lançamento do concreto se mantenha na posição estabelecida, conservando-se inalteradas as distâncias das barras entre si e com relação às faces internas das fôrmas.

A montagem da armadura deve ser feita por amarração, utilizando arames. No caso de aços soldáveis, a montagem pode ser feita por pontos de solda. A distância entre pontos de amarração das barras das lajes deve ter afastamento máximo de 35 cm. O cobrimento especificado para a armadura no projeto deve ser mantido por dispositivos adequados ou espaçadores e sempre se refere à armadura mais exposta.

É permitido o uso de espaçadores de concreto ou argamassa, desde que apresente relação água/cimento menor ou igual a 0,5, e espaçadores plásticos, ou metálicos com as partes em contato com a fôrma revestidas com material plástico ou outro material similar. Não devem ser utilizados calços de aço cujo cobrimento, depois de lançado o concreto, tenha espessura menor do que o especificado no projeto.

Antes de proceder à mistura do concreto na obra ou solicitar a entrega de concreto dosado em central, é necessário verificar as condições operacionais dos equipamentos disponíveis no local de trabalho e sua adequabilidade ao volume de concreto a ser produzido e transportado. As condições e a quantidade disponível de equipamentos necessários ao lançamento e ao adensamento do concreto devem também ser verificadas nesta etapa.

A equipe de trabalhadores devidamente treinados para a operação de concretagem deve estar dimensionada para realizar as etapas de preparo do concreto (se for o caso), lançamento e adensamento, no tempo estabelecido. No caso de concreto dosado em central, o trajeto a ser percorrido pelo caminhão betoneira no canteiro de obras até o ponto de descarga do concreto deve estar desimpedido e o terreno firme, de forma a evitar dificuldades na concretagem e atrasos no cronograma dessa operação.

A circulação dos caminhões deve ser facilitada, para que caminhões vazios possam deixar o local de descarga, dando espaço para entrada de outros. Após a descarga do concreto, a “bica” de descarga deve ser lavada no canteiro de obras. Quando o concreto for lançado por meio de bombeamento ou quando, em função das dimensões da estrutura de concreto, houver grande quantidade de caminhões circulando, deve-se prever um local próximo ao de concretagem para que os caminhões aguardem pelo momento de descarregar.

Concreto autoadensável

concreto4

Este concreto, com grande variedade de aplicações, é obtido pela ação de aditivos superplastificantes, que proporcionam maior facilidade de bombeamento, excelente homogeneidade, resistência e durabilidade. Sua característica é de fluir com facilidade dentro das formas, passando pelas armaduras e preenchendo os espaços sob o efeito de seu próprio peso, sem o uso de equipamento de vibração.

Para lajes e calçadas, por exemplo, ele se auto nivela, eliminando a utilização de vibradores e diminuindo o número de funcionários envolvidos na concretagem. Possui alta fluidez, capaz de preencher a fôrma onde é aplicado, compactando-se pela ação única de seu peso próprio e sem necessitar de qualquer tipo de vibração interna ou externa.

Este concreto deve, ainda, ser capaz de sustentar os grãos do agregado graúdo, mantendo-os homogeneamente distribuídos no interior da mistura, quando o concreto flui através de obstáculos – como as barras de armaduras – e também quando o concreto se encontra em repouso. Basicamente, tem três propriedades que são essenciais a este tipo de concreto: preencher a fôrma onde é aplicado e se autocompactar, sem vibração, mantendo-se homogêneo; passar através de obstáculos, como as barras de armaduras, sem apresentar bloqueio de partículas de agregados; e se manter-se homogêneo durante a mistura, o transporte e a aplicação.

A NBR 15823-1 de 08/2017 – Concreto autoadensável – Parte 1: Classificação, controle e recebimento no estado fresco estabelece os requisitos para classificação, controle e recebimento do concreto autoadensável no estado fresco, bem como define e estabelece limites para as classes de autoadensibilidade e prescreve os ensaios para verificação das propriedades do concreto autoadensável (CAA). Esta Parte 1 define a classificação do concreto autoadensável no estado fresco em função de sua autoadensibilidade e estabelece as diretrizes para a realização do controle por ensaios e para o recebimento do concreto autoadensável no estado fresco.

Aplica-se ao concreto com massa específica normal, compreendida no intervalo entre 2 000 kg/m³ e 2 800 kg/m³ dos grupos I e II de resistência, conforme a NBR 8953. O concreto pode ser misturado na obra, dosado em central ou produzido em indústria de pré-moldados. Convém avaliar, de forma individualizada, a aplicabilidade dos requisitos desta Parte 1 para o concreto autoadensável (CAA) com incorporação intencional de ar, agregados leves, agregados pesados ou fibras, cuja massa específica classifique o concreto como leve ou pesado, conforme a NBR 8953.

Algumas definições são importantes. Por exemplo, o CAA é aquele capaz de fluir, autoadensar pelo seu peso próprio, preencher a fôrma e passar por embutidos (armaduras, dutos e insertos), enquanto mantém sua homogeneidade (ausência de segregação) nas etapas de mistura, transporte, lançamento e acabamento.

Já a viscosidade plástica aparente do concreto é a propriedade relacionada à consistência da mistura (coesão) e que influencia na resistência (comportamento) do concreto ao escoamento. Quanto maior a viscosidade do concreto, maior a sua resistência ao escoamento

Uma avaliação qualitativa da viscosidade plástica aparente do concreto pode ser obtida pela medida do tempo de escoamento do CAA em ensaios que medem sua habilidade de fluir. O concreto com maior viscosidade demanda maior tempo para escoar. Os materiais constituintes do concreto autoadensável devem atender às normas e especificações vigentes, conforme estabelecido na NBR 12655. Os materiais constituintes devem ser caracterizados no mínimo pelos ensaios especificados nas NBR 5732, NBR 5733, NBR 5735, NBR 5736, NBR 11578, NBR 12989, NBR 13956-1, NBR 15894-1 e NBR 12653.

O uso de sílica ativa, metacaulim e outros materiais pozolânicos deve estar de acordo com as orientações do fabricante quanto a: forma e momento de adição na mistura; teores utilizados; e tempo de mistura. Outros ensaios podem ser requeridos, conforme acordo entre as partes. Os agregados utilizados na preparação do concreto autoadensável devem atender aos requisitos da NBR 7211. Outros ensaios podem ser requeridos conforme acordo entre as partes.

Os aditivos devem atender aos requisitos da NBR 11768 e seu uso deve estar de acordo com as orientações do fabricante, quanto a: forma e momento de adição na mistura; teores utilizados; tempo de mistura. Os ensaios de caracterização devem ser realizados conforme a NBR 10908. Os ensaios de compatibilidade entre aditivos ou aditivo/cimento são opcionais e podem ser realizados mediante solicitação do interessado.

A água utilizada para preparação do concreto deve estar de acordo com a NBR 15900-1. As operações de preparo, controle e aceitação do concreto autoadensável devem cumprir com o que estabelece a NBR 12655, exceto quanto aos requisitos de recebimento do concreto no estado fresco, bem como sua comprovação por ensaios, que devem ser verificados conforme a Seção 6. A moldagem dos corpos de prova para ensaios deve ser realizada sem adensamento manual ou mecânico e atendendo ao que estabelece a NBR 5738.

Para cada classe de concreto autoadensável a ser lançado em uma estrutura ou elemento estrutural, as propriedades e características requeridas no estado fresco devem ser previamente comprovadas por ensaios, conforme detalhado a seguir: classificação no estado fresco, conforme a Seção 5; controle de recebimento no estado fresco, conforme 6.2, para todas as aplicações do concreto autoadensável dosado em central ou preparado no canteiro de obras; controle de recebimento no estado fresco, conforme 6.3, para todas as aplicações do concreto autoadensável, na indústria de pré-fabricados ou em casos especiais; controle do lançamento, conforme 6.4, para o concreto autoadensável dosado em central ou preparado no canteiro de obras; comprovação das propriedades especiais do concreto e atendimento dos requisitos de durabilidade, conforme a NBR 12655.

O Anexo A contém um guia para o estabelecimento de requisitos do concreto autoadensável no estado fresco em função de sua aplicação, que pode ser utilizado para decidir sobre os ensaios mais adequados em cada caso e também para avaliar a classificação do concreto em função da aplicação pretendida. Para todas as aplicações, convém realizar ajustes na mistura ou o descarte do material, quando o concreto autoadensável apresentar IEV3. O controle do lançamento, conforme 6.4, para o concreto autoadensável dosado em central ou preparado no canteiro de obras.

A comprovação das propriedades especiais do concreto e atendimento dos requisitos de durabilidade, conforme a NBR 12655. O recebimento do CAA no estado fresco deve ser baseado no mínimo na comprovação das seguintes propriedades: fluidez, viscosidade plástica aparente e estabilidade visual – avaliadas pelo ensaio de espalhamento, t500 e índice de estabilidade visual, previstos na NBR 15823-2; habilidade passante – avaliada pelo ensaio utilizando o anel J, conforme a NBR 15823-3.

Caso sejam especificados os ensaios estabelecidos na NBR 15823-4 (método da caixa L) e/ou NBR 15823-5 (método do funil V), pode ser dispensada a realização dos ensaios estabelecidos na NBR 15823-3 (método do anel J) e/ou a medida do tempo de escoamento (t500), respectivamente. O concreto autoadensável deve atender aos requisitos estabelecidos nas Tabelas 1 a 4 (disponíveis na norma), conforme sua classificação no estado fresco, determinada pelos ensaios estabelecidos nas NBR 15823-2 e NBR 15823-3.

A escolha das classes em função da aplicação do CAA, pode seguir as indicações do Anexo A. Além desses requisitos, pode ser necessária a comprovação de outras propriedades do CAA em função de sua aplicação, especialmente em casos de grande complexidade estrutural, alta densidade de armadura e outros fatores tratados de forma abrangente no Anexo A. Nesses casos, as partes devem estabelecer, em comum acordo, os ensaios necessários para comprovação das propriedades adicionais, e seus resultados devem atender aos requisitos estabelecidos nas Tabelas 5 a 9 (disponíveis na norma).

Quando for necessário realizar a introdução de aditivo na obra, para atingir as propriedades requeridas no estado fresco, devem ser realizados os seguintes ensaios: antes da introdução dos aditivos na obra, deve ser coletada uma amostra de concreto e realizado o ensaio de abatimento, conforme a NBR NM 67; completada a mistura do concreto com os aditivos, deve ser coletada uma nova amostra para os ensaios estabelecidos nas NBR 15823-2 e NBR 15823-3. Quando não for necessária a introdução de aditivo na obra, deve ser coletada uma nova amostra para os ensaios estabelecidos nas NBR 15823-2 e NBR 15823-3. Quando requisitos complementares forem estabelecidos visando à comprovação das propriedades estabelecidas nas Tabelas 5 a 9, os ensaios devem ser realizados conforme as respectivas Partes desta norma.

Convém realizar todos os ensaios de classificação estabelecidos na Seção 5, para os estudos de dosagem e ajuste de traço do CAA. As determinações de espalhamento, t500 e índice de estabilidade visual do concreto devem ser realizadas a cada betonada, de acordo com o que estabelece a NBR 15823-2. A habilidade passante pelo anel J deve ser determinada conforme a NBR 15823-3, no mínimo a cada 30 m3 ou a cada jornada de trabalho, o que ocorrer primeiro, sendo realizada na primeira betonada, de modo a permitir ajustes no traço.

Outros ensaios, quando requeridos, devem ter sua frequência de realização estabelecida em comum acordo entre as partes. A aceitação do CAA no estado fresco deve ser baseada no mínimo na comprovação das seguintes propriedades: fluidez, viscosidade plástica aparente e estabilidade visual – avaliadas pelo ensaio de espalhamento, t500 e índice de estabilidade visual, previstos na NBR 15823-2; habilidade passante – avaliada pelo ensaio utilizando o anel J, conforme a NBR 15823-3.

Caso sejam especificados os ensaios estabelecidos na NBR 15823-4 (método da caixa L) e/ou na NBR 15823-5 (método do funil V), podem ser dispensadas a realização dos ensaios prescritos na NBR 15823-3 (método do anel J) e/ou a medida do tempo de escoamento (t500), respectivamente. A frequência de ensaios deve ser estabelecida considerando o processo produtivo, de forma a atender às seguintes condições: no caso de elementos estruturais armados, os ensaios previstos em 6.3.3 devem ser realizados pelo menos uma vez ao dia por traço produzido; no caso de elementos estruturais protendidos, executados em pista de protensão, os ensaios previstos em 6.3.3 devem ser realizados com o concreto destinado à concretagem de cada pista, no início dela; em ambos os casos um novo ensaio deve ser realizado sempre que houver alteração no proporcionamento dos materiais, ou paralisação e posterior retomada dos trabalhos.

O valor do espalhamento fornece indicações da fluidez do CAA e de sua habilidade de preenchimento em fluxo livre e é normalmente especificado para todas as aplicações. As classes de espalhamento são típicas para as aplicações apresentadas na tabela abaixo.

adensável

Normalmente se obtém melhor qualidade de acabamento da superfície com concreto da classe SF 3 para aplicações em geral, porém é mais difícil controlar a resistência à segregação do que se verifica no concreto de classe SF 2. Em casos especiais pode ser especificado um limite maior que 850 mm para o espalhamento, porém é importante avaliar a necessidade de utilização de agregado graúdo com dimensão máxima característica menor e igual que 12,5 mm, e os cuidados necessários para evitar a segregação.

A determinação da viscosidade plástica aparente do concreto é importante quando for requerido um bom acabamento superficial ou quando a densidade de armadura for expressiva. O CAA com baixa viscosidade apresenta um rápido espalhamento, porém de curta duração. Por sua vez, o CAA com alta viscosidade pode continuar a se mover de forma lenta e progressiva por um tempo maior.

A viscosidade pode ser avaliada igualmente pela medida do t500 (durante o ensaio de espalhamento, previsto na NBR 15823-2) ou pelo tempo medido no ensaio do funil V (NBR 15823-5). A viscosidade deve ser especificada apenas em casos especiais, mas a medida do t500, realizada durante o ensaio de espalhamento, pode auxiliar na verificação da uniformidade do CAA de diferentes betonadas.

A habilidade passante informa sobre a capacidade de o concreto fresco fluir, sem perder sua uniformidade ou causar bloqueio, através de espaços confinados e descontinuidades geométricas, como áreas de alta densidade de armadura e embutidos. Na definição da habilidade passante é necessário considerar a geometria da armadura e do elemento estrutural a ser concretado. A resistência à segregação é fundamental para a homogeneidade e a qualidade do CAA, e é particularmente importante em concretos autoadensáveis de maior fluidez e baixa viscosidade.

As classes SR1 e TP1 atendem à maioria das aplicações. O CAA sofre segregação dinâmica durante o lançamento e segregação estática após o lançamento. A segregação estática é mais danosa em elementos estruturais altos, mas também em lajes pouco espessas, podendo levar a defeitos como fissuração e enfraquecimento da superfície.

Conheça as normas que fazem parte dessa série para ensaiar corretamente esse tipo de concreto. A NBR 15823-2 de 08/2017 – Concreto autoadensável – Parte 2: Determinação do espalhamento, do tempo de escoamento e do índice de estabilidade visual – Método do cone de Abrams estabelece o método de ensaio para avaliação da fluidez do concreto autoadensável, em fluxo livre, sob a ação de seu próprio peso, pela determinação do espalhamento e do tempo de escoamento do concreto autoadensável, empregando-se o cone de Abrams. A NBR 15823-3 de 08/2017 – Concreto autoadensável – Parte 3: Determinação da habilidade passante – Método do anel J estabelece o método de ensaio para a determinação da habilidade passante do concreto autoadensável, em fluxo livre, pelo anel J.

A NBR 15823-4 de 08/2017 – Concreto autoadensável – Parte 4: Determinação da habilidade passante – Métodos da caixa L e da caixa U estabelece o ensaio para a determinação da habilidade passante em fluxo confinado do concreto autoadensável usando a caixa L. A NBR 15823-5 de 08/2017 – Concreto autoadensável – Parte 5: Determinação da viscosidade – Método do funil V estabelece o ensaio para a determinação da viscosidade do concreto autoadensável, pela medida do tempo de escoamento de uma massa de concreto através do funil V. A NBR 15823-6 de 08/2017 – Concreto autoadensável – Parte 6: Determinação da resistência à segregação – Métodos da coluna de segregação e da peneira estabelece o método de ensaio para a determinação da resistência à segregação do concreto autoadensável, pela diferença das massas de agregado graúdo existentes no topo e na base da coluna de segregação.



Categorias:Normalização, Qualidade

Tags:, , , , , , , , , , , ,

Deixe uma resposta

%d blogueiros gostam disto: